Providing Value

A Better Life

Achieving “better living” with continued happiness

Individual

A Better World

Achieving a sustainable society

Society
Providing Value

A Better Life

- Housing
 - Connected Home
 - Zero Emission House
 - Robot Appliances

- Automotive
 - Connected Car
 - Electrification
 - Auto-driving
 - Shared Economy

- IoT/Robotics
 - AI, Sensing, UI/UX

A Better World

- Energy
 - Renewable
 - Zero Emission
 - Local Production & Consumption

- Second battery, Hydrogen

Creating “A Better Life, A Better World” with the Technology 10-Year Vision

- Freedom from Housework
- No Accident
- No Congestion
- Low-carbon Society
- Diversification
- Energy
- Battery, Hydrogen

- Home Energy Solution
- Building/Regional Energy Solution
- Retail Solutions
- Next-gen Logistics
- Automotive energy Solution

https://www.panasonic.com/global/corporate/technology-design/10years-vision.html
IoT/Robotics

10-Year Vision

Freedom from Housework
No Accident
No Congestion
Improve Service Quality
Elimination of Labor Shortage
AI Robotics Home Appliances
Autonomous Driving
Retail Solutions
Next-gen Logistics

Low-carbon Society
Energy Diversification
Clean Car

Energy
Battery, Hydrogen

Automotive energy Solution

IoT/Robotics
AI, Sensing, UI/UX

Technology

Society 5.0: Super Smart Society

Based on material from Japanese Govt. http://www8.cao.go.jp/cstp/society5_0/index.html

Copyright (C) 2017 Panasonic Corporation All Rights Reserved.
From “Keeping process” to “Customer Value First”

Society 3.0 (Industrial Society)

• Mass production with good quality by defining and obeying processes.
• Focus hardware product innovation

Society 5.0 (Super Smart Society)

• Customer value first, apply the best process for it.
• Innovation of all business models including hardware, software, service, etc.

Direct communication with customers

Waterfall Process:

Unspecified Large Number of Customers

Agile Process:

Specified Large Number of Customers
Restructuring Corporate R&D to promote innovation on April, 2017

Technology & Design Section -> Innovation Promotion Section

Senior Managing Executive Officer
CTO, CMO, CQO, CPO, CIO
Yoshiyuki Miyabe

Business Innovation Division
Advanced Research Division
Manufacturing Technology and Engineering Division
Design Strategy Office

Information Systems Department

Company
R&D/Business

AP Technology Division
Business Development Center

ES Business Development Center

CNS Innovation Center

AIS Technology Division
Business Development Center

Business Digitalization

Business Innovation Division
Wataru Baba
Business Digitalization

Construction of Digital Native Business

Establishment of Panasonic β

Optimization in Innovation Promotion Division

HOMEX - Digital Business Model

A Platform Company Winning Digital Ecosystem Software Designed Hardware

HOMEX - Digital Priority

Digital Customer Digital Products Digital Supplier Digital Workforce Digital Finance

Copyright (C) 2017 Panasonic Corporation All Rights Reserved.
Software Driven Type Living Space Hardware

Disrupt other industries by digital native business model

Growth through reinventing our industry

Panasonic β
Realization of Mini Horizontal Panasonic and Establishment of Mother Factory for Innovation Mass Production

Horizontal Panasonic about Job Function

Software Design AI Data Science

Panasonic β
Panasonic Cross Value Studio

People Process Place

Horizontal Panasonic about Business Division
Panasonic β Involves the whole company
Cross Value Type Regrowth by Horizontal Panasonic about Business Division and Horizontal Panasonic about Job Function

Idea Creation
Prototype
Hardware Prototype
Living Space Prototype

People
Job Function
Company

July
September
November

Restructuring Business Process by Innovation Promotion Division

Panasonic β

Manufacturing Technology and Engineering Division
Business Innovation Division
Advanced Research Division

Show Rapidly Launch Rapidly

Design

Energy

Homex
Panasonic β that leads next 100 years

1. Construction of Digital Native Business
 - Panasonic β
 - Digital Native

2. Regrowth of Mainstream Business
 - Panasonic
 - Digital Transformation

Manufacturing that Embodies the Business Ideas from Rapid Prototyping to Mass Production

Manufacturing Technology and Engineering Division
Tatsuo Ogawa
Show Faster

Embody the ideas rapidly by prototyping

Improve the visualized concept by prototype with a feeling of touch

Model made with cardboard etc. Usable prototypes

Manufacturing that realizes rapid prototyping

Produce the prototype rapidly from data creation

- CAD data linkage
- High precision scan
- Measure
- Decorate
- Print
- Customized design
- Decorative Printing
- Additive manufacturing
- 3D modeling
Connect to the Business Faster
Produce hundreds units in a short time to examine the business model

- Make a mold with a metal 3D printer
- Reduce L/T significantly
- Prove concept quickly
- Quality of the products is mass pro level

L/T for mold: 1 moths → 1 week

Digitalization of Mass Production
Manage the production instruction optimally for various order & demand change

<table>
<thead>
<tr>
<th>Cyber</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation due to changes</td>
<td>Feedback to operation</td>
</tr>
<tr>
<td>Various order</td>
<td>Changes in the field</td>
</tr>
<tr>
<td>Simulate</td>
<td>Implement dispatch plan</td>
</tr>
<tr>
<td>Verify optimal production instructions</td>
<td>Supplier, Plant, Storage~Logistics</td>
</tr>
</tbody>
</table>

Logistics tracking

Verify optimal production instructions

Implement dispatch plan

Supply, plant, storage~logistics

Digitalization of Mass Production
Manage the production instruction optimally for various order & demand change

<table>
<thead>
<tr>
<th>Cyber</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation due to changes</td>
<td>Feedback to operation</td>
</tr>
<tr>
<td>Various order</td>
<td>Changes in the field</td>
</tr>
<tr>
<td>Simulate</td>
<td>Implement dispatch plan</td>
</tr>
<tr>
<td>Verify optimal production instructions</td>
<td>Supplier, Plant, Storage~Logistics</td>
</tr>
</tbody>
</table>

Logistics tracking

Verify optimal production instructions

Implement dispatch plan

Supply, plant, storage~logistics
Energy Technology 10-Year Vision

IoT/Robotics
AI, Sensing, UI/UX
Energy
Battery, Hydrogen

Freedom from Housework
No Accident No Congestion
Low-carbon Society
Energy Diversification

Improving Service Quality
Elimination of Labor Shortage
Retail Solutions Next-gen Logistics

Home Energy Solution
Building/Regional Energy Solution
Clean Car
Automotive energy Solution

Rechargeable battery is key device to reduce fossil fuel

Gasoline-fueled Car
Gasoline Engine
Gasoline Tank

Electric Vehicle
Experimental Electric Vehicle
Motor
Key Device
Rechargeable Battery
Leading Rechargeable Battery Business

- Tesla Gigafactory (Nevada, US)
- Dalian Factory (China)
- Suminoe Factory (Japan)

Advanced Research in Energy Field

Advanced Research Division
Masato Aizawa
Importance of Materials for Battery Performance

Importance of new materials development and analysis of atomic/molecular behavior

Rechargeable battery composition and charge-discharge

Shortening of New Material Development

Solution for drawbacks of a trial and error approach

Materials Informatics
Data-driven Material Search

Structure prediction of functional material by AI

Expt. data
- Battery: Data for 50 years

Reported data
- 50 million data

Simulation data

Material data
- 1 million data

AI

Elaborate Analysis and Evaluation

Analysis of atomic arrangement and behavior

Atomic-scale resolution
Electron microscope

Real-time dynamic analysis ※

Thin-film battery
Thickness 0.1 μm
50 μm

Li behavior in battery material

※ The world’s first tech in positive electrodes (Best presentation award at ICMaSS 2017)
Quick Launch Products into Markets

Close relationship between material search and manufacturing

Rapid Prototyping
Advanced Research
New Materials
New Manufacturing
Production Engineering

Manufacturing Technology and Engineering Division
Tatsuo Ogawa
Pursuit of Security & Safety in Manufacturing

- Monitor physical properties & process points that we could not see before in real time

Knead • Disperse Coat / Dry Join • Cut

In-process physical properties / Characteristics sensing

Aim to provide 100% quality with zero defects facilities

Evolution of Traceability by Visualization of Factory

- Aggregate & analyze the all information in factory, reflect decision on production site instantly
 (To Zero Defect from Quality Control)

① Discover & digitize on-site information
- Awareness, MES/Equipment, Inspection log
- Daily report, check
- Sensor data

② Process & store into handleable data
- IoT, Big data, AI
- Select data
- Distributed processing

③ Visualize & analyze process quality in real time
- Trend monitoring
- Visualize the characteristic distribution

Panasonic
Conclusion
Disclaimer Regarding Forward-Looking Statements

This presentation includes forward-looking statements (that include those within the meaning of Section 27A of the U.S. Securities Act of 1933, as amended, and Section 21E of the U.S. Securities Exchange Act of 1934, as amended) about Panasonic and its Group companies (the Panasonic Group). To the extent that statements in this presentation do not relate to historical or current facts, they constitute forward-looking statements. These forward-looking statements are based on the current assumptions and beliefs of the Panasonic Group in light of the information currently available to it, and involve known and unknown risks, uncertainties and other factors. Such risks, uncertainties and other factors may cause the Panasonic Group’s actual results, performance, achievements or financial position to be materially different from any future results, performance, achievements or financial position expressed or implied by those forward-looking statements. Panasonic undertakes no obligation to publicly update any forward-looking statements after the date of this presentation. Investors are advised to consult any further disclosures by Panasonic in its subsequent filings under the Financial Instrument and Exchange Act of Japan (the FIEA) and other publicly disclosed documents.

The risks, uncertainties and other factors referred to above include, but are not limited to, economic conditions, particularly consumer spending and corporate capital expenditures in the Americas, Europe, Japan, China and other Asian countries; volatility in demand for electronic equipment and components from business and industrial customers, as well as consumers in many product and geographical markets; the possibility that excessive currency rate fluctuations of the U.S. dollar, the euro, the Chinese yuan and other currencies against the yen may adversely affect costs and prices of Panasonic’s products and services and certain other transactions that are denominated in these foreign currencies; the possibility of the Panasonic Group incurring additional costs of raising funds, because of changes in the fund raising environment; the possibility of the Panasonic Group not being able to respond to rapid technological changes and changing consumer preferences with timely and cost-effective introductions of new products in markets that are highly competitive in terms of both price and technology; the possibility of not achieving expected results or incurring unexpected losses in connection with the alliances or mergers and acquisitions; the possibility of not being able to achieve its business objectives through joint ventures and other collaborative agreements with other companies, including due to the pressure of price reduction exceeding that which can be achieved by its effort and decrease in demand for products from business partners which Panasonic highly depends on in BtoB business areas; the possibility of the Panasonic Group not being able to maintain competitive strength in many product and geographical areas; the possibility of incurring expenses resulting from any defects in products or services of the Panasonic Group; the possibility that the Panasonic Group may face intellectual property infringement claims by third parties; current and potential, direct and indirect restrictions imposed by other countries over trade, manufacturing, labor and operations; fluctuations in market prices of securities and other financial assets in which the Panasonic Group has holdings or changes in valuation of non-financial assets, including property, plant and equipment, goodwill and deferred tax assets; future changes or revisions to accounting policies or accounting rules; the possibility of incurring expenses resulting from a leakage of customers’ or confidential information from Panasonic Group systems due to unauthorized access or a detection of vulnerability of network-connected products of the Panasonic Group; as well as natural disasters including earthquakes, prevalence of infectious diseases throughout the world, disruption of supply chain and other events that may negatively impact business activities of the Panasonic Group. The factors listed above are not all-inclusive and further information is contained in the most recent English translated version of Panasonic’s securities reports under the FIEA and any other documents which are disclosed on its website.